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Quite recently two papers have been published [Giacovazzo & Mazzone (2011).

Acta Cryst. A67, 210–218; Giacovazzo et al. (2011). Acta Cryst. A67, 368–382]

which calculate the variance in any point of an electron-density map at any stage

of the phasing process. The main aim of the papers was to associate a standard

deviation to each pixel of the map, in order to obtain a better estimate of

the map reliability. This paper deals with the covariance estimate between points

of an electron-density map in any space group, centrosymmetric or non-

centrosymmetric, no matter the correlation between the model and target

structures. The aim is as follows: to verify if the electron density in one point of

the map is amplified or depressed as an effect of the electron density in one or

more other points of the map. High values of the covariances are usually

connected with undesired features of the map. The phases are the primitive

random variables of our probabilistic model; the covariance changes with the

quality of the model and therefore with the quality of the phases. The conclusive

formulas show that the covariance is also influenced by the Patterson map.

Uncertainty on measurements may influence the covariance, particularly in the

final stages of the structure refinement; a general formula is obtained taking into

account both phase and measurement uncertainty, valid at any stage of the

crystal structure solution.

1. Notation

F ¼
PN

j¼1 fj expð2�ih � rjÞ ¼ jFj expði’Þ, structure factor of the

target structure;

Fp ¼
Pp

j¼1 fj expð2�ih � r0jÞ ¼ jFpj expði’pÞ, where r0j ¼ rj + �rj,

structure factor of the model structure;

Cs� (Rs, Ts), sth symmetry operator. Cs r�Rsr + Ts, where Rs

and Ts are the rotational and translational matrices, respec-

tively;

C�1
s ;R�1

s ;T�1
s , inverse matrices of Cs, Rs and Ts, respectively;

n, number of symmetry operators for the target and for the

model structure;P
N ¼

PN
j¼1 f 2

j ;P
p ¼

Pp
j¼1 f 2

j ;

E ¼ Aþ iB ¼ R expði’Þ, Ep = Ap + iBp = Rp expði’pÞ, R =

jFj=ð
P

NÞ
1=2, Rp ¼ jFpj=ð

P
pÞ

1=2, normalized structure factors

and their moduli;

�ðrÞ ¼ ð2=VÞ
P

h>0 jFhj cosð2�h � r� ’hÞ, general expression

of an electron-density map;

�pðrÞ ¼ ð2=VÞ
P

h>0 jFphj cosð2�h � r� ’phÞ, electron-density

map of the model structure;

�obsðrÞ ¼ ð2=VÞ
P

h>0 mhjFhj cosð2�h � r� ’phÞ, observed elec-

tron density when a model is available (m is defined below);

PðuÞ ¼ ð2=VÞ
P

h>0 jFhj
2 cosð2�h � uÞ, Patterson synthesis.

In all the above Fourier syntheses the term of order zero is

omitted. Accordingly, the average values of the corresponding

maps are always zero. By h > 0 it is meant that the summation

is over one half of reciprocal space (only one member of each

Friedel pair is included).

DiðxÞ ¼ IiðxÞ=I0ðxÞ, Ii is the modified Bessel function of order i;

D ¼ hcosð2�h ��rÞi, the average is performed per resolution

shell;

�A ¼ Dð�p=�NÞ
1=2;

�2
R ¼ hj�j

2
i=
P

N , hj�j2i1=2 is the expected value of the

measurement error, usually assumed to coincide with its

experimental standard deviation;

e ¼ 1þ �2
R;

m¼hcosð’� ’pÞi¼ I1ðXÞ=I0ðXÞ, where X¼2�ARRp=ðe��
2
AÞ;

m is the weight to associate to each reflection in the non-

centrosymmetric case. It coincides with the expected value of

cosð’� ’pÞ;

mc ¼ tanhðX=2Þ, the weight to associate to each reflection in

the centric case;

CORR, correlation between model and target electron-

density maps.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5005&bbid=BB20


2. Introduction

The study of the properties of electron-density maps started

with W. H. Bragg in 1915 and continued with Bragg & West

(1930), Booth (1946, 1947), Cruickshank (1949), Cochran

(1951), and Cruickshank & Rollett (1953). Thanks to the

above works, criteria were established for assessing the

accuracy of the results of structure analysis. Among the other

achievements, it was clearly established that truncation ripples

displace peaks from their correct atomic positions, and that

least squares are unbiased tools for the correct location of the

atoms. Special attention was devoted to the effects of uncer-

tainty of measurement; in particular Cruickshank (1949)

calculated the expected mean square error in the electron

density in the unit cell as

�2
ð�Þ ¼

1

V2

X
h

�2
ðjFhjÞ; ð1Þ

where �2ðjFhjÞ is the variance of the observed amplitude. A

similar formula was obtained for the difference density

�� ¼ �obs � �calc:

�2ð��Þ ¼
1

V2

X
h

�2ðjFhjÞ; ð2Þ

where �obs and �calc are the observed and the calculated

electron densities. Data resolution was taken into account by

replacing �2ðjFhjÞ with the expected value of jFhj
2 for all the

reflections beyond the data termination.

The covariance in the deformation electron density was

introduced by Rees (1976, 1978) to assess the meaningfulness

of the structural model. The study concerned the function

�� ¼ �obs=k� �c, where �obs is the unscaled observed elec-

tron density eventually obtained after a multipolar refinement,

k is the scale factor relating diffracted amplitudes and struc-

ture factors, and �c is obtained from the refined model

consisting of spherical atoms. The study took into account the

errors in the experimental amplitudes, the errors on the model

parameters and the errors in the scale factor.

In all the above works the emphasis was mainly focused on

the errors connected to the mentioned parameters; indeed the

final formulas find their applications in the last stages of

crystal structure refinement, when the phases are considered

well estimated and therefore are fixed parameters of the

modelling.

Rees stated that covariance is useful if one wants to

compare electron densities at two points in the same crystal

(say rA and rBÞ, particularly when the chemical equivalence

may be used to compute an average deformation electron

density and therefore more precise information. Rees’ inves-

tigation was limited to P1, for which he obtained the following

formula:

h�ðrÞ�ðrþ uÞi ¼
2

V2

X
h>0

�2
ðjFhjÞ½cos 2�h � ðrA � rBÞ

þ cos 2�h � ðrA þ rBÞ�: ð3Þ

Rees suggested that equation (3) may be extended to other

centrosymmetric space groups by adding suitable symmetry

elements (e.g. densities are calculated as for P1 and then

averaged over the symmetry-equivalent positions), but no

general formula was derived.

We are interested in calculating the covariance between two

points of an electron-density map in any space group, and to

study its properties when a structural model is available, no

matter whether it is of poor or of high quality. In this case the

phases of the target structure cannot be considered as fixed

parameters of the problem but as variables which determine

the value of the covariance for any pair of points in the map.

Under the above hypotheses the covariance expressions may

be useful not only in the final stages of structure refinement

but also during the phasing process.

We will use the same mathematical approach described by

Giacovazzo & Mazzone (2011) for the P1 space group and by

Giacovazzo et al. (2011) for any centrosymmetric and non-

centrosymmetric space group. In particular we will assume

that each target phase ’h is distributed around the model

phase ’ph according to the von Mises distribution (von Mises,

1918),

Mð’; X; ’pÞ ¼ ½2�I0ðXÞ�
�1 exp½X cosð’� ’pÞ�: ð4Þ

Under this hypothesis we are able to estimate the covariance

no matter the correlation between the model and target

structures. In particular, when CORR = 0 equation (4) is

equivalent to a random distribution; when CORR �1 the

phase distribution coincides with the Dirac delta function.

In the first part of this paper we will study a basic compo-

nent of the covariance, say the joint moment h�ðrÞ�ðrþ uÞi,

first in P1 and then in all centrosymmetric and non-

centrosymmetric space groups. In xx7–8 the covariance

expression is derived for any type of hybrid electron-density

map, in x9 the correlation formula is obtained, and in x10 a

general expression of the covariance taking into account both

phase and measurement uncertainty is given.

Some few additional comments are necessary to better

describe the aim, the limits and the potential of this paper:

(i) A crystal structure solution process usually ends with a

set of atomic parameters; they are published together with

corresponding standard deviations, which act as accuracy

criteria. Least squares are considered a fundamental tool in

crystallography just because they provide optimal values for

the parameters, for their variances and covariances; they are

usually inefficient if covariance between parameters is high.

(ii) It is not usual in crystallography to associate the

variance to an electron-density map, even if it is the standard

deviation, calculated at each pixel of the map, which states

how reliable is the density value at that pixel. This practice is

unsatisfactory because in all the cases in which a parameter is

part of a model, the associated variance should be calculated.

The practice for the electron densities was certainly originated

by a lack of theory, only recently supplied by Giacovazzo &

Mazzone (2011) and Giacovazzo et al. (2011), who provided a

tool for estimating the quality of an electron-density map in

each point r of the map at any stage of the phasing process, no

matter if an observed, a difference or a hybrid electron density
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was calculated. The practice, however, was also facilitated by

the fact that least-squares cycles, which often follow the

electron-density map analysis, are an efficient succedaneum:

indeed they provide the required standard deviations for the

structural parameters, and calculate covariance between

them.

(iii) Covariance, or correlation, between two points of an

electron-density map is a signal for understanding if the

electron density in one point of the map is amplified or

depressed as an effect of the electron density in another point

of the map. Electron-density maps are strongly affected by

covariance effects; ripples associated with peaks are a typical

example, but also pseudotranslational symmetry is a frequent

source of covariance. This paper establishes the mathematical

formulas for calculating covariances between peak densities at

any step of the phasing process (in some way, it is the coun-

terpart in real space of least-squares covariance calculations).

As we will see in this paper, large covariances indicate

undesired features of the map.

(iv) Covariance itself is not a new tool for solving crystal

structures. The approach described in this paper does not aim

to correct the standard deviation of the experimental inten-

sities or the intensities themselves; it only uses the experi-

mental values and the current phases for calculating

covariances in an electron-density map. Inevitably errors in

the experimental values or in the phases will lead to errors in

covariances. In spite of this limitation, the theory described in

this paper has inspired a new technique for solving crystal

structures from powder data (Altomare et al., to be

submitted).

(v) For calculating covariance maps for practical cases fast

Fourier transform (FFT) is mandatory. This is the reason why

in this paper the main covariance features have been studied

in simple one-dimensional cases. In a paper in preparation

(Giacovazzo & Mazzone, to be submitted) it is shown how

FFT may be used for calculating variance maps; we hope to

extend the method for calculating covariances.

3. About the joint moment hhhq(r)q(r + u)iii in P1

We will calculate the joint moment

h�ðrÞ�ðrþ uÞi ¼
4

V2

�X
h;k>0

FhFk

�� �� cosð2�h � r� ’hÞ

� cos½2�k � ðrþ uÞ � ’k�

�
ð5Þ

under the assumption of equation (4). This assumption is quite

common in phasing procedures; at a certain stage of the

phasing process a model becomes available, from which the

reliability factor Xh may be calculated for each reflection (Sim,

1959; Srinivasan & Ramachandran, 1965; Read, 1986; Burla et

al., 2011).

Under the hypothesis of equation (4) and by assuming that

phases ’h and ’k are statistically independent of each other,

equation (5) reduces to

h�ðrÞ�ðrþ uÞi ¼
2

V2

X
h>0

Fh

�� ��2cos 2�h � uþ
2

V2

X
h>0

Fh

�� ��2D2ðXhÞ

� cosð2�h � uþ 4�h � r� 2’phÞ

þ
4

V2

X
h 6¼k>0

FhFk

�� ��mhmk cosð2�h � r� ’phÞ

� cos½2�k � ðrþ uÞ � ’pk�: ð6Þ

We notice now that

�obsðrÞ�obsðrþ uÞ ¼
4

V2

X
h>0

Fh

�� ��2m2
h cosð2�h � r� ’phÞ

� cos½2�h � ðrþ uÞ � ’ph�

þ
4

V2

X
h 6¼k>0

FhFk

�� ��mhmk cosð2�h � r� ’phÞ

� cos½2�k � ðrþ uÞ � ’pk�; ð7Þ

and therefore the last term of equation (6) may be estimated

via equation (7). Finally we obtain

h�ðrÞ�ðrþ uÞi ¼ Tobs þ T1 þ T2; ð8Þ

where

Tobsðr; rþ uÞ ¼ �obsðrÞ�obsðrþ uÞ;

T1ðr; rþ uÞ ¼
2

V2

X
h>0

Fh

�� ��2ð1�m2
hÞ cos 2�h � u;

T2ðr; rþ uÞ ¼ �
2

V2

X
h>0

Fh

�� ��2½m2
h �D2ðXhÞ�

� cosð4�h � rþ 2�h � u� 2’phÞ:

We observe:

(a) Given the prior knowledge of the model structure �pðrÞ

(and therefore of the phases ’ph) the joint moment

h�ðrÞ�ðrþ uÞi may be represented by a six-dimensional map.

Indeed for each point rA a three-dimensional map

h�ðrAÞ�ðrA þ uÞimay be drawn. Equation (8) suggests that the

joint moment is not a decreasing function of the distance |u|.

(b) h�ðrÞ�ðrþ uÞi is the sum of three terms.

Tobs is a non-centrosymmetric function, phase and therefore

model dependent. In particular it coincides with the product of

the observed electron densities in r and r + u: it vanishes if

�obsðrÞ and/or �obsðrþ uÞ vanish. The largest joint moment

values will probably concern pairs of points ðr; rþ uÞ where

the observed electron density is large.

T1 is a centrosymmetrical function of u; it is a weighted

Patterson function which may be described as a difference of

Patterson maps:

T1 ¼ V�1
½PðuÞ � PwðuÞ�;

where PwðuÞ is the map calculated via coefficients m2
hjFhj

2. If

CORR = 0, then T1 ¼ V�1PðuÞ; if CORR = 1 then T1 vanishes.

If CORR is far from zero and 1, the weights minimize the

contribution of the reflections with the largest observed and

calculated amplitudes (for which m2
h 	 1). In this case T1

contributes to the joint moment h�ðrÞ�ðrþ uÞi mostly through

reflections with large observed and small calculated values.
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T2 is a six-dimensional weighted Fourier synthesis, a func-

tion of r and u, belonging to a special category of ‘observed

syntheses’, denoted FF synthesis by Burla et al. (2006) and by

Caliandro et al. (2007). It uses jFj2 observed moduli as the

standard Patterson function, but it combines them with

calculated phases 2’ph [e.g. the typical coefficient of a

Patterson function is FhF�h ¼ jFhj
2, that of the FF synthesis is

FhFh ¼ jFhj
2 expði2’phÞ]. The FF synthesis is expected to show

maxima at ri + rj (they will correspond to negative minima of

T2), where ri and rj are atomic positional vectors. The weight

m2
h �D2ðXhÞ of T2 is always non-negative, is everywhere

smaller than ð1�m2
hÞ and its value vanishes at X = 0 and

X =1.

T2 is a non-centrosymmetric function: for a given vector u it

shows a three-dimensional periodicity in r, half that of the

electron density. Indeed it assumes the same value in r and in

rþ�r, where �r = �xa + �yb + �zc. �x, �y, �z may

independently assume the values 0 or 1/2.

(c) If the model is uncorrelated with the target structure,

Tobs vanishes (because mh vanishes for all reflections), T1

coincides with the Patterson synthesis and T2 vanishes too. In

short

h�ðrÞ�ðrþ uÞiuncorr ¼ V�1PðuÞ: ð9Þ

Equation (9) reminds us that, in the absence of phase infor-

mation, for a given random model, h�ðrÞ�ðrþ uÞiuncorr may still

be different from zero provided the Patterson map is not

vanishing in u. To give a simple idea of the practical conse-

quences, let us choose in the �obs map a generic peak defined

by the positional vector rA. Even if CORR = 0, the pixel of

the �obs map located at rB = rþ u is expected to have (but

not necessarily has) a non-vanishing density provided the

Patterson map shows a peak in u. Such a result is not

surprising; indeed the Patterson function is independent of the

phases, and just suggests that the value of the joint moment

h�ðrÞ�ðrþ uÞi is not vanishing if P(u) shows a peak in u.

(d) If CORR�1, then the phases are no more free variables

and their distributions coincide with Dirac delta functions. In

this case T1 and T2 vanish, and

h�ðrÞ�ðrþ uÞicorr ¼ �obsðrÞ�obsðrþ uÞ:

(e) In non-extreme cases (e.g. when a model is available

with correlation far away from 0 or 1), the joint moment

h�ðrÞ�ðrþ uÞi is the sum of three contributions. All of them

concur to establish the value of the joint moment, with

constructive or destructive interference. It may be useful to

check if, in some conditions, one of Tobs, T1 or T2 is negligible

with respect to the others. We consider as an example an

(unrealistic) P1 structure (the target structure) with a = 5.45, b

= 6.56, c = 12.11 Å, � = 106, � = 96, � = 78
.

The three O atoms constituting the structure were all

located along the c axis, at zO1 = 0.114, zO2 = 0.800, zO3 = 0.514,
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Figure 1
Case 1: model and target structures nearly coincident (0.91 Å resolution
data). Components of the h�ðzO3Þ�ðzO3 þ uÞi moment: (a) Tobs versus u;
(b) T1 and T2 versus u (in blue and green, respectively). The covariance
(T1 + T2) is drawn in black.

Figure 2
Case 2: target structure as in Fig. 1, model structure as in Fig. 1 but O1 was
moved from the original position (0.91 Å resolution data). Components
of the h�ðzO3ÞðzO3 þ uÞi moment: (a) Tobs versus u; (b) T1 and T2 versus u
(in blue and green, respectively). The covariance (T1 + T2) is drawn in
black.



to easily depict in one dimension the joint moment compo-

nents. We want to estimate h�ðzO3Þ�ðzO3 þ uÞi versus u; in

other words, we will calculate the joint moment with respect to

the O3 peak as a function of the distance u from the O3

position. The three terms on the right-hand side of equation

(8) have been calculated and plotted in Figs. 1–3 for three

structure models (data up to 0.91 Å resolution). In each figure

the red, blue and green lines represent Tobs, T1 and T2,

respectively.

Case 1 (see Fig. 1). The model nearly coincides with the

target. We calculated for h�Ai (i.e. the average of the �A values

computed per resolution shell) the value of 0.95: mh is close to

unity for all the largest reflections. The joint moment

h�ðzO3Þ�ðzO3 þ uÞi practically coincides with Tobs, as theore-

tically expected. Three Tobs peaks are visible in Fig. 1(a),

corresponding to the distances O1—O3, O3—O3 and O2—

O3. T1 and T2 are negligible with respect to Tobs (see Fig. 1b).

T1 shows an origin peak, as expected for a Patterson-like

function, much smaller than Tobs peaks.

T2 is expected to show negative peaks at the positions zO1 +

zO2 = �0.09, zO1 + zO3 = �0.37, zO2 + zO3 = 0.31 which are

visible in Fig. 1(b) (the last one a bit shifted).

Case 2 (see Fig. 2). We moved O1 to zO1 = 0.37, the other

two atoms remain in their original positions. The model is well

correlated with the target (h�Ai = 0.75) and mh is close to unity

for the largest observed reflections. Tobs is still dominant:

peaks corresponding to the distances O1—O3 and O2—O3 in

both the target and model structures can be recognized (this

information is usually present in the observed electron

densities). T1 shows a main peak at the origin, as expected for

Patterson-like functions, as well as faint peaks in correspon-

dence of the target distances O2—O3 and O1—O3. T2 nega-

tive peaks are in correspondence with the ri + rj positions as

present in both model and target structures (in accordance

with the observed nature of the FF synthesis).

Case 3 (see Fig. 3). We moved the three atoms to new

positions, say zO1 = 0.23, zO2 = 0.74, zO3 = 0.57. The model is

practically uncorrelated with the target: we calculated �A =

0.1. Tobs is still dominant with respect to T1 and T2 (it may be

neglected only at �A values very close to zero); its average

intensity is strongly diminished with respect to cases 1 and 2.

T2 is vanishing and flat everywhere, T1 shows a main peak at

the origin (much smaller than the main peak of Tobs), and two

wide peaks mostly including the target interatomic distances.

(f) h�ðrÞ�ðrþ uÞi depends on the data resolution: the better

the resolution, the larger the number of structure-factor

moduli contributing to the summations in equation (8).

We rewrite equation (8) in a notation (say r ¼ rA and

u ¼ rB � rA) which will allow us a more direct comparison

with the formula [see equation (3)] obtained by Rees in P1.

We obtain

h�ðrAÞ�ðrBÞi ¼ �obsðrAÞ�obsðrBÞ þ
2

V2

X
h>0

Fh

�� ��2ð1�m2
hÞ

� cos½2�h � ðrA � rBÞ�

�
2

V2

X
h>0

Fh

�� ��2½m2
h �D2ðXhÞ�

� cos½2�h � ðrA þ rBÞ � 2’ph�: ð10Þ

4. The estimate of the joint moment hhhq(r)q(r + u)iii in P1

The �ðrÞ expression for P1 does not substantially change with

respect to that used for P1; the only difference is that ’ may

only assume the values 0 or �. In our calculations we will

assume that ’p may only get the values 0 or �, that ’ ¼ ’p or

’ ¼ ’p þ � according to circumstances, and that the weight mc

may be associated with the relation ’ 	 ’p. Then

h�ðrÞi ¼
2

V

X
h>0

mchjFhj cosð2�h � r� ’phÞ ¼ �obsðrÞ:

After some calculations, similar to those described in x3, we

obtain

h�ðrAÞ�ðrBÞi ¼ �obsðrAÞ�obsðrBÞ þ
2

V2

X
h>0

Fh

�� ��2ð1�m2
chÞ

� fcos½2�h � ðrA � rBÞ� þ cos½2�h � ðrA þ rBÞ�g:

ð11Þ

We notice:
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Figure 3
Case 3: target structure as in Fig. 1, the three O atoms of the model
structure moved far away from the original positions (0.91 Å resolution
data). Components of the h�ðzO3ÞðzO3 þ uÞimoment: (a) Tobs versus u; (b)
T1 and T2 versus u (in blue and green, respectively). The covariance (T1 +
T2) is drawn in black.



(i) In P1 both rA � rB and rA þ rB are interatomic vectors;

therefore

h�ðrAÞ�ðrBÞi ¼ �obsðrAÞ�obsðrBÞ

þ V�1
½PðrA � rBÞ � PwcðrA � rBÞ�

þ V�1½PðrA þ rBÞ � PwcðrA þ rBÞ�; ð12Þ

where Pwc is the Patterson function calculated with coeffi-

cients m2
ch Fh

�� ��2.
Equation (12) takes full account of the symmetry. Indeed,

when rB ¼ rA or rB ¼ �rA (in this last case rB and rA are

symmetry-equivalent positions) we have

h�ðrAÞ�ðrBÞi ¼ h�
2
ðrAÞi ¼ �

2
obsðrAÞ þ V�1

½Pð0Þ � Pwcð0Þ�

þ V�1½Pð2rAÞ � Pwcð2rAÞ�: ð13Þ

(ii) If the model is uncorrelated with the target structure,

then �obsðrAÞ�obsðrBÞ ¼ 0 and

h�ðrAÞ�ðrBÞi ¼
1

V
½PðrA � rBÞ þ PðrA þ rBÞ�:

If, in addition, rB ¼ rA or rB ¼ �rA then

h�2
ðrAÞi ¼ V�1

½Pð0Þ þ Pð2rAÞ�:

(iii) If the model is highly correlated with the target, the

joint moment is totally dominated by Tobs. Situations in

between cases (ii) and (iii) can be easily understood on the

basis of the above considerations and of those described in x3.

5. About the joint moment hhhq(r)q(r + u)iii in any non-
centrosymmetric space group

Owing to the well known symmetry relationship

FhR ¼ Fh expð�2�ihTÞ ¼ jFhj exp½ið’h � 2�hTÞ�;

the general expression of the electron density for an acentric

space group is

�ðrÞ ¼
2

V

X
h;ind

jFhj
Xn

s¼1

cos½’ðhÞ � 2�hCsr�:

If each phase ’h is assumed to be distributed around ’ph

according to the von Mises distribution [equation (4)], then

h�ðrÞ�ðrþ uÞi ¼
2

V2

X
h;ind

Fh

�� ��2D2ðXhÞ
Xn

s;q¼1

cosf2’pðhÞ

� 2�h½Csrþ Cqðrþ uÞ�g

þ
2

V2

X
h;ind

Fh

�� ��2Xn

s;q¼1

cos 2�h½Csr� Cqðrþ uÞ�

þ
4

V2

X
h 6¼k;ind

mhmkjFhFkj
Xn

s;q¼1

cos½’pðhÞ

� 2�hCsr� cos½’pðkÞ � 2�kCqðrþ uÞ�:

Since

�obsðrÞ�obsðrþ uÞ ¼
2

V2

X
h;ind

m2
h Fh

�� ��2 Xn

s;q¼1

cosf2’pðhÞ

� 2�h½Csrþ Cqðrþ uÞ�g

þ
Xn

s;q¼1

cos 2�h½Csr� Cqðrþ uÞ�

!

þ
4

V2

X
h 6¼k;ind

mhmkjFhFkj
Xn

s;q¼1

cos½’pðhÞ

� 2�hCsr� cos½’pðkÞ � 2�kCqðrþ uÞ�;

then

h�ðrÞ�ðrþ uÞi ¼ �obsðrÞ�obsðrþ uÞ þ 2V�2
P

h;ind

Fh

�� ��2ð1�m2
hÞ

�
Pn

s;q¼1

cos 2�h½Csr� Cqðrþ uÞ�

� 2V�2
P

h;ind

jFhj
2
½m2

h �D2ðXhÞ�

�
Pn

s;q¼1

cosf2’pðhÞ � 2�h½Csrþ Cqðrþ uÞ�g:

If we use the notation r ¼ rA and u ¼ rB � rA we have

h�ðrAÞ�ðrBÞi ¼ Tobs þ T1a þ T2a; ð14Þ

where

TobsðrA; rBÞ ¼ �obsðrAÞ�obsðrBÞ;

T1aðrA; rBÞ ¼ 2V�2
P

h;ind

Fh

�� ��2ð1�m2
hÞ

�
Pn

s;q¼1

cos½2�hðCsrA � CqrBÞ�; ð15aÞ

T2aðrA; rBÞ ¼ �2V�2
P

h;ind

jFhj
2
½m2

h �D2ðXhÞ�

�
Pn

s;q¼1

cos½2’pðhÞ � 2�hðCsrA þ CqrBÞ�: ð15bÞ

It may be worthwhile noticing that the term

2V�2
P

h;ind

Fh

�� ��2ð1�m2
hÞ
Pn
s¼1

cos½2�hCsðrA � rBÞ�

is part of T1aðrA; rBÞ, obtained when s = q.

T1a and T2a may be rewritten (see Appendix A) in the form

T1aðrA; rBÞ ¼
2

V2

X
h>0

Fh

�� ��2ð1�m2
hÞ
Xn

s¼1

cos½2�hðrA � CsrBÞ�

ð16aÞ

T2aðrA; rBÞ ¼ �
2

V2

X
h>0

jFhj
2
½m2

h �D2ðXhÞ�

�
Xn

s¼1

cos½2’pðhÞ � 2�hðrA þ CsrBÞ�: ð16bÞ

Acta Cryst. (2012). A68, 244–255 Angela Altomare et al. � Covariance and correlation estimation 249

research papers



6. About the joint moment hhhq(r)q(r + u)iii in any
centrosymmetric space group

In a centric space group of order n the electron density may be

expressed as

�ðrÞ ¼ 2V�1
P

h;ind

jFhj
Pn=2

s¼1

cos½’ðhÞ � 2�hCsr�;

where n/2 is the number of symmetry operators not referred

by an inversion centre (see Giacovazzo et al., 2011). Accord-

ingly

h�ðrÞi ¼ 2V�1
P

h;ind

mchjFhj
Pn=2

s¼1

cos½’pðhÞ � 2�hCsr� ¼ �obsðrÞ:

The application of the same mathematical procedure

described in x5 leads to

h�ðrÞ�ðrþ uÞi ¼ 2V�2
P

h;ind

Fh

�� ��2 Pn=2

s;q¼1

cos 2�h½Csrþ Cqðrþ uÞ�

þ 2V�2
P

h;ind

Fh

�� ��2 Pn=2

s;q¼1

cos 2�h½Csr� Cqðrþ uÞ�

þ 4V�2
P

h 6¼k;ind

mchmckjFhFkj
Pn=2

s;q¼1

cos½’pðhÞ

� 2�hCsr� cos½’pðkÞ � 2�kCqðrþ uÞ�:

Since

�obsðrÞ�obsðrþ uÞ ¼ 2V�2
P

h;ind

m2
ch Fh

�� ��2� Pn=2

s;q¼1

cos 2�h½Csr

þ Cqðrþ uÞ� þ
Pn=2

s;q¼1

cos 2�h½Csr� Cqðrþ uÞ�

�

þ 4V�2
P

h6¼k;ind

mchmckjFhFkj
Pn=2

s;q¼1

cos½’pðhÞ

� 2�hCsr� cos½’pðkÞ � 2�kCqðrþ uÞ�;

then

h�ðrÞ�ðrþ uÞi ¼ �obsðrÞ�obsðrþ uÞ

þ 2V�2
P

h;ind

Fh

�� ��2ð1�m2
chÞ

�
Pn=2

s;q¼1

cos 2�h½Csr� Cqðrþ uÞ�

þ 2V�2
P

h;ind

Fh

�� ��2ð1�m2
chÞ

�
Pn=2

s;q¼1

cos 2�h½Csrþ Cqðrþ uÞ�:

In terms of rA and rB we obtain

h�ðrAÞ�ðrBÞi ¼ �obsðrAÞ�obsðrBÞ

þ 2V�2
P

h;ind

Fh

�� ��2ð1�m2
chÞ

Pn=2

s;q¼1

cos 2�hðCsrA

� CqrBÞ

þ 2V�2
P

h;ind

Fh

�� ��2ð1�m2
chÞ

Pn=2

s;q¼1

cos 2�hðCsrA

þ CqrBÞ: ð17Þ

If C belongs to the space-group symmetry operators, �C also

belongs to them. Then equation (17) reduces to

h�ðrAÞ�ðrBÞi ¼ �obsðrAÞ�obsðrBÞ þ Tc;

where

Tc ¼ 2V�2
P

h;ind

Fh

�� ��2ð1�m2
chÞ

Pn
s;q¼1

cos 2�hðCsrA � CqrBÞ:

ð18Þ

If we extend the sum over the h index to half the measured

reciprocal space then the double summation over s and q may

be reduced to a simple summation over s; then

Tc ¼ V�2
P
h>0

Fh

�� ��2ð1�m2
chÞ
Pn
s¼1

cos½2�hðrA � CsrBÞ�: ð19Þ

7. The covariance estimate

Covariance of two random variables x and y is defined by

covðx; yÞ ¼ hðx� hxiÞðy� hyiÞi ¼ hxyi � hxihyi:

It vanishes when x and y are statistically independent. Our

study aims to estimate the covariance between the electron

densities at two points of a map: in our case x ¼ �ðrAÞ and

y ¼ �ðrBÞ. We can now rewrite equations (14) and (18) in

terms of covariance. For non-centrosymmetric space groups

we obtain

covðrA; rBÞ ¼ T1a þ T2a; ð20Þ

where T1a and T2a are defined by equations (15a), (15b) or

(16a), (16b).

For the centrosymmetric case the covariance expression is

covcðrA; rBÞ ¼ Tc; ð21Þ

where Tc is given by equation (18) or (19).

If rB � rA or if rB is a position symmetry equivalent to rA,

then equations (20) and (21) reduce to the formulas derived

by Giacovazzo et al. (2011) for estimating the variance in a

point of an electron-density map. In particular T1a and T2a

reduce to the variance components TH and TD, respectively,

and Tc becomes identical to the variance in centric space

groups.

To summarize the covariance properties in non-centro-

symmetric space groups we notice that the first term of the

covariance (say T1a) is related to the Patterson function, the

second term (say T2a) to the model. In particular:
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(i) T1a is the difference between two terms. The first is the

sum of the target Patterson values calculated at the points

ðrA � CsrBÞ when s varies over the symmetry operators of the

space group. The second is the sum of the weighted target

Patterson values, again calculated at the points ðrA � CsrBÞ,

with model-dependent weights m2
h:

T1aðrA; rBÞ ¼ V�1
Pn
s¼1

PðrA � CsrBÞ � PwðrA � CsrBÞ
� �

:

When the model is uncorrelated with the target structure

T1aðrA; rBÞ ¼ V�1
Pn
s¼1

PðrA � CsrBÞ:

If the model coincides with the target structure

T1aðrA; rBÞ ¼ 0.

(ii) T2a belongs to the category of observed weighted

Fourier synthesis: the phases come from the model, the

coefficients (say jFhj
2) from the target, the weights [say

m2
h �D2ðXhÞ] from the correlation between model and target.

Negative minima are expected at the model atomic positions

ðrA þ CsrBÞ.

(iii) Quantitatively, the covariance depends on the corre-

lation between the target and model structures.

In order to illustrate in more detail the relation between

covariance and the joint moment h�ðrAÞ�ðrBÞi, let us suppose

that rA and rB are two atomic positional vectors for both the

model and target structures, and that during the phasing

process the model is continuously improving (e.g., CORR is

continuously increasing). As an effect of the model improve-

ment the joint moment h�ðrAÞ�ðrBÞi would increase; that does

not imply that �ðrAÞ and �ðrBÞ are statistically dependent

quantities (they may increase independently of each other, as

an effect of the phase variation). To check if �ðrAÞ and �ðrBÞ

are statistically dependent we should take into consideration

covðrA; rBÞ: if it does not vanish, �ðrAÞ and �ðrBÞ are statisti-

cally dependent. While the variance expression (see Giaco-

vazzo et al., 2011) includes a constant positive term (i.e., the

variance is never expected to be negative and oscillates about

the constant term), such a term is absent from the covariance

formula because covariance may be positive or negative.

In Figs. 1b, 2b and 3b covðzO3; zO3 þ uÞ has been plotted as a

black line for the three models. In all three cases a main peak

exists: it is a trivial peak, because it corresponds to the

covariance between �ðzO3Þ and the densities of the pixels

belonging to the same zO3 peak. Such peak intensity decreases

when the model–target correlation decreases. The reason for

the existence of the large trivial peak is obvious: the larger the

density in zO3, the larger the density in the close pixels.

Close to the main peak there are regions with negative

values of the covariance; they correspond to the zO3 peak

ripples. Also this result is expected; indeed, the larger the

density in zO3, the larger and more negative is the density of

the ripple pixels.

A third observation is the following: when the model and

target structures are very close, then a negative covariance is

found between �ðzO3Þ and the other two peaks. Indeed, if the

phases vary in such a way that the zO3 peak increases, the

other two peaks should show a smaller intensity to keep the

total density unvaried.

The analysis of the covariance becomes more complicated

in Figs. 2 and 3 where the models significantly differ from the

target. Indeed the peak distribution in the h�ðzO3Þ�ðzO3 þ uÞi

map (see Figs. 2a and 3a) simultaneously shows peaks corre-

sponding to interatomic distances present in the target or in

the model, plus some additional false peaks. For example, in

Fig. 2(a) a peak at about u = �0.40, corresponding to distance

zO1t—zO3 (zO1t is the z position of O1 in the target structure)

and a false peak at about �0.32 are clearly visible. Covariance

calculated with respect to �ðzO3Þ is negative for the first peak

and positive for the second one (the first is suggested from the

Patterson, the second from the phases).

Some final general observations on the covariance deserve

to be made:

(i) Good models should show small (with respect to Tobs)

covariances, bad models should suffer with larger covariance

values.

(ii) Covariance (in an absolute sense) decreases when data

resolution becomes poor. As an example we show in Fig. 4(a)

h�ðzO3Þ�ðzO3 þ uÞi for the same model used for Fig. 1, calcu-

lated by using data up to 1.8 Å resolution. The main features

of the covariance are maintained, but in Fig. 4(b) covariance is

on a smaller scale than in Fig. 1(b); the reader will however

also notice that h�ðzO3Þ�ðzO3 þ uÞi decreases even more

rapidly.
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Figure 4
Same model and target structures as for Fig. 1, but with data at 1.8 Å
resolution. Components of the h�ðzO3ÞðzO3 þ uÞi moment: (a) Tobs versus
u; (b) T1 and T2 versus u (in blue and green, respectively). The covariance
(T1 + T2) is drawn in black.



(iii) If data completeness and resolution are both high, if

uncertainty of measurement is negligible and phases well

assigned, if no structural pseudosymmetry is present, then

there is no reason for a substantial covariance in an electron-

density map between pairs of points ðrA; rBÞ; in other words,

the values of the covariance should be negligible with respect

to the corresponding h�ðrAÞ�ðrBÞi values. If one or more of the

above conditions are violated, a non-negligible covariance

should be expected between specific pairs of points in the map;

the nature of the pairs would depend on which conditions

have been violated. A typical example is the negative covar-

iance between a peak and its ripples, mainly due to data

truncation effects rather than to an intrinsic property of the

electron-density function. A further example of high covar-

iance is described in Fig. 7 (see below), where the correlation

rather than the covariance map is taken into account.

8. Covariance estimate for hybrid electron-density
maps

Often one is more interested in the covariance of hybrid

rather than of standard electron-density maps; a typical

example is the wide use of difference Fourier syntheses, which

play an important role not only during the phasing process but

also in the later stages of structure refinement. Let us first

consider the difference synthesis

�qðrÞ ¼ �ðrÞ � �pðrÞ ¼ 2V�1
P
h>0

jFqhj cosð2�h � r� ’qhÞ;

where

Fqh ¼ jFqhj expði’qhÞ ¼ jFj expði’hÞ � jFpj expði’phÞ

is its Fourier coefficient. Then

h�qðrÞi ¼ h�ðrÞi � �pðrÞ ¼ �obsðrÞ � �pðrÞ

¼
2

V

X
h>0

ðmhjFhj � jFphjÞ cosð2�h � r� ’qhÞ

is its expected value in a point r [see Main (1979) and Burla et

al. (2010)]; the mathematical technique described here may

also be applied to h�qðrÞi maps calculated according to Read

(1986). If �qðrAÞ ¼ �ðrAÞ � �pðrAÞ and �qðrBÞ ¼ �ðrBÞ � �pðrBÞ

are the values of the difference electron density at rA and rB,

respectively, and if h�qðrAÞ�qðrBÞi and covqðrA; rBÞ are the

corresponding joint moment and covariance, respectively,

then

h�qðrAÞ�qðrBÞi ¼ h½�ðrAÞ � �pðrAÞ�½�ðrBÞ � �pðrBÞ�i

¼ h�ðrAÞ�ðrBÞi þ �pðrAÞ�pðrBÞ

� h�ðrAÞi�pðrBÞ � �pðrAÞh�ðrBÞi

and

covqðrA; rBÞ ¼ covðrA; rBÞ:

In conclusion, a difference Fourier synthesis shows the same

covariance values of the standard electron density.

This result has important effects which may be described by

means of the example illustrated in Fig. 5. The target structure

is composed of the same three O atoms used for case 1, plus

one Li atom at zLi = 0.314; the model structure consists of the

three O atoms only. At 0.91 Å resolution we calculated a

residual between observed and calculated structure factors of

0.23 and we found h�Ai ¼ 0:75. The observed electron density

is shown in Fig. 5(a), the difference map calculated via coef-

ficients mh|Fobs| � |Fcalc| (say h�qðrÞi) is shown in Fig. 5(b), T1

and T2 and the covariance [calculated with respect to �ðzO3Þ]

are shown in Fig. 5(c). The position of the Li atom is clearly

visible in both the observed and the difference electron

densities. The covariance shows the usual trivial positive peak,

some negative minima corresponding to �ðzO3Þ ripples and to
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Figure 5
The target structure is composed of the same three O atoms used for Fig.
1 plus one Li atom at zLi = 0.314; the model structure consists of the three
O atoms only (0.91 Å resolution data). (a) Observed electron density; (b)
difference map calculated via coefficients mh|Fobs|� |Fcalc|; components of
the h�ðzO3ÞðzO3 þ uÞimoment: (c) T1, T2 and covariance versus u (in blue,
green and black, respectively).



O1 and O2 positions, and a positive peak in correspondence

with the missed Li atom.

Let us now consider the hybrid synthesis

�QðrÞ ¼ 	�ðrÞ � !�pðrÞ ¼
2

V

X
h>0

jFQj cosð2�h � r� ’QÞ:

FQ ¼ 	jFhj expði’hÞ � !jFphj expði’phÞ

is its Fourier coefficient and

h�QðrÞi ¼
2

V

X
h>0

ð	mjFhj � !jFphjÞ cosð2�h � r� ’phÞ

is its expected value. It is easily seen that

covQðrA; rBÞ ¼ 	
2covðrA; rBÞ: ð22Þ

The covariance only depends on the coefficient 	 and is

insensitive to the value of ! [in agreement with the variance

estimates obtained by Giacovazzo et al. (2011) for hybrid

syntheses].

9. About the correlation estimate

The correlation of two random variables x and y is defined by

Cðx; yÞ ¼
covðx; yÞ

�x�y

; ð23Þ

where �x and �y are the standard deviations of x and y,

respectively. While the covariance may take positive or

negative values in a range which depends on the standard

deviation at the points, the correlation is expected to be in the

range (�1, +1). In our notation equation (23) becomes

CðrA; rBÞ ¼
covðrA; rBÞ

var1=2½�ðrBÞ�var1=2½�ðrBÞ�
;

where var½�ðrÞ� is the variance of the map � in a point r.

We report for reader usefulness the variance expressions

obtained by Giacovazzo et al. (2011). In non-centrosymmetric

space groups

var�ðrÞ ¼ TH1 þ TH2ðrÞ þ TDðrÞ ð24Þ

and

TH1 ¼
2

V2

X
h>0

Fh

�� ��2ð1�m2
hÞ; ð25aÞ

TH2ðrÞ ¼
2

V2

X
h>0

Fh

�� ��2ð1�m2
hÞ
Xn

s¼2

cos½2�hðI� CsÞr�; ð25bÞ

TDðrÞ ¼ �
2

V2

X
h>0

Fh

�� ��2½m2
h �D2ðXhÞ�

Xn

s¼1

cos½2’pðhÞ

� 2�hðIþ CsÞr�: ð25cÞ

In centric space groups

var�ðrÞ ¼
2

V2

X
h>0

Fh

�� ��2ð1�m2
chÞ
Xn

s¼1

cos½2�hðI� CsÞr�: ð26Þ
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Figure 6
Correlation between the density at zO3 and the other density values;
target and model structures coincide with those used for Fig. 5.

Figure 7
An example of correlation induced by pseudotranslational symmetry
(pseudotranslation vector u0 = 1/2). Target structure composed of three O
atoms (zO1 = 0.11, zO2 = 0.63, zO3 = 0.83) plus one C atom at zC = 0.3, in
the model structure the C atom has been missed, 0.91 Å data resolution.
(a) Observed electron density; (b) correlation map with respect to the
density at zO1; (c) correlation map with respect to the density at zO3.



Let us now consider the correlation coefficient CQðrA; rBÞ

between two points of a hybrid Fourier synthesis. Since

covQðrA; rBÞ ¼ 	
2covðrA; rBÞ and var1=2

Q ½�ðrÞ� ¼ 	var1=2½�ðrÞ�, it

is easily concluded that correlation is insensitive to the type of

Fourier synthesis.

To provide the reader with a simple example, we calculated,

for the target and model structures depicted in Fig. 5, the

correlation between �ðzO3Þ and the other density values; the

result is shown in Fig. 6. Obviously C is equal to 1 for u = 0; it

regularly decreases until u becomes part of the first ripple,

where C becomes negative and attains its absolute minimum

(about �0.6). Positive values of C are found in correspon-

dence with the missed Li position and negative values in

correspondence with the O1 position.

A further example of non-negligible correlation (and of

non-negligible covariance) is shown in Fig. 7; it is generated by

the presence of a strong pseudotranslational symmetry. The

target structure is composed of three O atoms (zO1 = 0.11, zO2

= 0.63, zO3 = 0.83) and one C atom at zC = 0.31; in the model

structure the C atom is missed. We used 0.91 Å resolution

data, for which we calculated h�Ai 	 0:7. The structure shows

a pseudotranslational symmetry with pseudotranslation vector

u0 = 1/2 which relates O1 to O2 and O3 to C. In Fig. 7(a) the

observed electron density is shown: the peak at about 0.31 is a

virtuous effect of the observed electron density and of an echo

of the O3 peak due to pseudosymmetry (part of the intensity

of the O3 peak is transferred to the C peak). In Fig. 7(b) the

correlation map with respect to the density at zO1 is shown; in

perfect agreement with expectations, besides the trivial main

peak, positive correlation is observed for the peak referred by

u0 = 1/2 (say O2) and negative correlation with respect to C

and O3 peaks. A similar figure is obtained if the correlation

map is calculated with respect to the density at zO2	 0.63 (not

shown for brevity). In Fig. 7(c) the correlation map with

respect to the density at zO3 is shown; the correlation is

positive for the C peak, and negative for the O1 and O2 peaks

(a similar correlation map is found for the C peak).

10. A general expression of the covariance valid at any
stage of the structure analysis

The covariance arising from uncertainty of measurement is

negligible when the model is poor, essentially because �2ðjFhjÞ

is usually quite a small percentage of the jFhj
2 moduli. But

even if the model has been refined in a satisfactory way the

contribution to the covariance arising from the uncertainty of

the phases may still survive, and may be comparable with the

contribution coming from the uncertainty of measurement.

Indeed it is not rare that some model inadequacy is still

present after the refinement; one of the reasons may be the

spherical atom assumption, but also inaccurate thermal factor

estimates, occupancy factors etc. may constitute a supple-

mentary source of covariance. It is therefore useful to combine

into a unique expression the contributions arising from phase

uncertainties and from uncertainty of measurement.

In x2 we quoted the Rees (1976) expression for the

covariance in P1, valid under the condition that model and

target phases coincide. In order to generalize that equation

to all acentric space groups, we will consider the electron

density

��ðrÞ ¼
2

V

X
h;ind

�jFhj
Xn

s¼1

cos½’pðhÞ � 2�hCsr�;

where �jFhj ¼ jFjobs � jFjtrue. The following reasonable

assumptions will hold:

(i) the same �jFj is associated to symmetry-equivalent

reflections;

(ii) h�jFji ¼ 0 and h�jFhj�jFkji ¼ 0 if h 6¼ k;

(iii) h�jFhj�jFhji ¼ �
2ðjFhjÞ, where �ðjFhjÞ is the standard

deviation of the observed structure-factor modulus.

Under the above assumptions the corresponding contribu-

tion to the covariance is

�covðrA; rBÞ ¼
2

V2

X
h>0

�2
ðjFhjÞ

Xn

s¼1

cos½2�hðrA � CsrBÞ�

þ
2

V2

X
h>0

�2ðjFhjÞ
Xn

s¼1

cos½2’pðhÞ

� 2�hðrA þ CsrBÞ�: ð27Þ

If we suppose that the uncertainty of measurement

(depending on the experiment) is statistically independent of

the phase uncertainty (which depends on the model) we can

combine equation (27) with equation (20) to obtain a general

expression valid at any stage of the crystallographic phasing:

covðrA; rBÞ ¼ Ta1t þ Ta2t; ð28Þ

where

Ta1t ¼
2

V2

X
h>0

�2
ðjFhjÞ þ jFhj

2
ð1�m2

hÞ
� �

�
Xn

s¼1

cos½2�hðrA � CsrBÞ� ð29aÞ

Ta2t ¼ �
2

V2

X
h>0

jFhj
2
½m2

h �D2ðXhÞ� � �
2ðjFhjÞ

	 


�
Xn

s¼1

cos½2’pðhÞ � 2�hðrA þ CsrBÞ�: ð29bÞ

For centrosymmetric space groups the combined formula [see

equation (21)] is

covcðrA; rBÞ ¼ Tc2; ð30Þ

where

Tc2 ¼
2

V2

X
h>0

�2
ðjFhjÞ þ jFhj

2
ð1�m2

chÞ
� �

�
Xn

s¼1

cos½2�hðrA � CsrBÞ�: ð31Þ

When rA ¼ CsrB the covariance expressions (28), (29a), (29b),

(30), (31) coincide with the equations derived by Giacovazzo

et al. (2011) for the variance.
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11. Conclusions

Covariance between two points of an electron-density map has

seldom been the object of study (Rees, 1976, 1978) even if it

deals with fundamental aspects of the Fourier syntheses. A

general theory has been described here which provides

covariance estimates at any stage of the phasing process (i.e.

for any model quality) and for any centrosymmetric or non-

centrosymmetric space group. It has been shown that, of the

two terms contributing to the variance estimate, one is related

to the Patterson function, the other to the model. The covar-

iance between two points varies with the correlation between

target and model structure, is space-group dependent and

varies with data resolution. A formal expression of the

correlation between the electron densities of two points of any

type of Fourier map has been given. A general formula has

been derived which also takes into account the uncertainty on

the diffraction moduli. The theory has been generalized to any

type of hybrid Fourier synthesis.

APPENDIX A

To demonstrate that equations (15a) and (16a) are identical,

we apply the symmetry operator algebra as follows [see

International Tables for Crystallography (Wondratschek,

1992)]:

2�hðCsrA � CqrBÞ ¼ 2�hRsðrA � R�1
s RqrBÞ þ 2�hðTs � TqÞ

¼ 2�hRsðrA � R	rBÞ þ 2�hðTs � TqÞ;

ð32Þ

where C	 ¼ C�1
s Cq and

R	 ¼ R�1
s Rq; T	 ¼ R�1

s Tq þ T�1
s : ð33Þ

Since

T�1
s ¼ �R�1

s Ts ð34Þ

we have

2�hðTs � TqÞ ¼ 2�hRsðR
�1
s Ts � R�1

s TqÞ ¼ �2�hRsT	: ð35Þ

Combining equations (35) and (32) gives

2�hðCsrA � CqrBÞ ¼ 2�hRsðrA � C	rBÞ;

which makes equations (15a) and (16a) identical.

The above results may easily demonstrate that equations

(15b) and (16b) are identical. Indeed

2’h � 2�hðCsrA þ CqrBÞ ¼ 2’hRs þ 4�hTs � 2�hRsðrA þ R	rBÞ

� 2�hðTs þ TqÞ

¼ 2’hRs � 2�hRsðrA þ R	rBÞ

þ 2�hðTs � TqÞ:

In accordance with equation (35) we have

2’h � 2�hðCsrA þ CqrBÞ ¼ 2’hRs � 2�hRsðrA þ C	rBÞ:
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